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Abstract1 

 

How does software contribute to military accidents? The stakes are high. In the present, software 

systems have been partly responsible for naval accidents, and such incidents could trigger larger 

conflicts. In the past, computerized early warning systems produced “near-miss” nuclear crises 

during the Cold War. In the future, military systems that incorporate new advances in artificial 

intelligence could fail with devastating consequences. Existing studies apply “normal accidents” and 

“high reliability organizations” theory to shed light on the causes of military accidents. While these 

approaches are helpful, they neglect the military’s system acquisition process, which involves 

outsourcing software development to prime contractors such that input from military operators is 

limited to the late stages of development. By expanding the causal timeline of military accidents 

beyond decisions made on the battlefield to those made decades earlier in software design and 

development, this article presents an alternative way to explain how software contributes to military 

accidents. It tests the explanatory power of this theory against “normal accidents” and “high 

reliability organizations” theory across a range of case studies, including: i) the 1988 Vincennes 

incident, in which a U.S. naval ship accidentally shot down an Iran Air civilian airliner; ii) the Patriot 

fratricides at the beginning of the Second Gulf War; iii) the 2017 USS McCain collision; and iv) 

software upgrades in the 2021 Kabul airlift. 

  

 
1 This project has benefited greatly from conversations with Allan Dafoe, Sanne Verschuren, and Jacquelyn Schneider. 
For helpful feedback and suggestions, I thank Markus Anderljung, Noemi Dreksler, Ben Garfinkel, Julie George, Scott 
Sagan, Toby Shevlane, Eoghan Stafford, Baobao Zhang, and participants at an ISA panel. I am also grateful for support 
from Stanford's Center for International Security and Cooperation and Stanford's Institute for Human-Centered 
Artificial Intelligence.  
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I. Introduction 

On August 21, 2017, the USS John McCain crashed into an oil tanker near the Strait of 

Malacca, resulting in the death of ten sailors and marking the Navy’s worst accident in four decades. 

While the Navy initially blamed the incident on the McCain’s crew, later investigations pointed out 

issues with the ship’s navigation software.2 In fact, the Navy’s own review stated, “There is a 

tendency of designers to add automation…without considering the effect to operators who are 

trained and proficient in operating legacy equipment.”3  

Safety-critical software systems come with high stakes. In the present, navies rely on 

navigation software like the one used on the McCain, and an accident at sea is one of the most likely 

triggers for a conflict between the U.S. and China.4 In the past, accidents involving computerized 

early warning systems produced many “near-miss” nuclear crises during the Cold War. In the future, 

military systems that incorporate new advances in artificial intelligence (AI) and other emerging 

technologies could also fail with devastating consequences.5  

How does software contribute to the risk of military accidents? Existing scholarship on the 

safety risks of military technology systems draw on debates between normal accidents theory (NAT) 

and high reliability organizations (HRO) theory.6 The normal accidents approach argues that the 

causes of accidents in highly complex and tightly coupled technological systems are deeply 

embedded in the systems themselves. Tightly coupled systems require centralized authority because 

small mishaps can rapidly escalate into major disasters, but problems in complex systems demand 

responses by local decision-makers who understand how the system works. The tension between 

 
2 Miller et al. 2019. 
3 U.S. Fleet Forces Command 2017. 
4 Yergin 2020. 
5 Scharre 2018; Horowitz et al. 2019.  
6 The seminal text on this subject is Sagan 1993. See Sagan 1991; Bezooijen and Kramer 2015; Scharre 2018. On the 
organizational politics of accidents in autonomous weapons, see Goldfarb and Lindsay 2022; Horowitz 2019; Horowitz 
et al. 2020; Scharre 2016; Schneider and Macdonald 2023. On other contextual factors that shape the risks of accidents, 
see Bode 2023; Owens 2003; Pauly and McDermott 2023; Slayton 2014. 
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these two imperatives results in unavoidable accidents.7 Under NAT, since software-intensive 

military systems are very complex and tightly coupled, accidents are inevitable in these systems. For 

instance, one expert on AI governance predicts that normal accident problems will be “particularly 

acute in military AI applications.”8  

The HRO literature, in contrast, posits that certain organizations can effectively manage the 

risks of hazardous technologies. Studies in this tradition emphasize the importance of organizational 

culture, such as deference to expertise and dedication to learning from failures, as well as flexible 

organizational structures that permit authority to be centralized and decentralized depending on the 

situation.9 As evidenced by studies of the U.S. Navy’s nuclear aircraft carrier community and 

submarine community, certain military organizations have demonstrated excellent safety records 

with complex, interdependent technology systems.10 Scholars have put forward the HRO model as a 

way to manage the risks of autonomous weapons.11 

Without a doubt, these two approaches have produced valuable insights on the causes of 

military accidents. Yet, applications of NAT and HRO theory to software-intensive military systems 

share a drawback: their scope of analysis is confined to the actions of military organizations after 

software systems have been fielded. This means that they neglect the initial phase of software 

acquisition and development, when critical safety decisions are made. It also means that the existing 

literature does not account for the activities of private companies (defense contractors), which 

develop the vast majority of military software.  

Taken together, these considerations point to the importance of the military’s software 

acquisition process. If this process limits feedback from military operators to end-stage testing and 

 
7 Perrow 1984; Sagan 1993. 
8 Maas 2018; Borrie 2016; Scharre 2016; Horowitz 2019; Horowitz, Scharre, and Velez-Green 2019. 
9 Laporte and Consolini 1991; Hopkins 1999. 
10 Roberts et al. 1994; Scharre 2016.  
11 Dietterich 2019; Scharre 2016, 51. 



4 

evaluation (e.g., linear “waterfall” models), when it is too late to change fundamental system designs, 

accidents are more likely. These acquisition pathways often yield confusing human-machine 

interfaces and limit adaptability to hidden vulnerabilities that emerge from operators using the 

system in the field. This article proposes software development lifecycle (SDL) theory as an 

alternative way to explain how software contributes to military accidents. 

Attention to the software development process helps account for system failures that HRO 

and NAT cannot explain. Consider, as an illustration, the failure of a Patriot missile battery to 

intercept a Scud missile which struck a U.S. barracks at Dhahran, Saudi Arabia, in the last days of 

the Gulf War. Army investigators attributed the breakdown to a timing error in the computer 

software designed by Raytheon. Long, continuous operation led to loss of precision in the range 

gate’s tracking of missiles. Crucially, technical specialists were aware of the issue and had even 

developed a patch for the issue, but the upgrade was not prioritized because they discounted the 

possibility that operators would keep the computer running for long periods without a reboot.12 The 

accident was not “normal”; despite tight coupling and complexity, the cause was well understood, 

and a fix was en route. Nor could it have been prevented by the Army improving its organizational 

culture and structure; the computer malfunction was a product of a considerable disconnect between 

Army users and software contractors in the Patriot’s development process. 

I test the relative strength of SDL theory against the NAT and HRO approaches with four 

case studies: i) the 1988 Vincennes incident, in which a U.S. naval ship accidentally shot down an 

Iran Air civilian airliner; ii) the Patriot fratricides at the beginning of the Second Gulf War; iii) the 

2017 USS McCain collision; and iv) software performance in the 2021 Kabul airlift. Across each 

case, I evaluate the extent to which the empirical findings match with concrete expectations derived 

 
12 US General Accounting Office 1992. For more on Patriot malfunctions in the Gulf War, see Postol 1991 and 
correspondence by Raytheon officials. 
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from the three theoretical approaches, especially regarding the timing of the most salient decisions, 

the key precipitating events, and the principal actors. Selected and structured in a way that allows for 

a fair test of the three theories, the cases reveal how flaws in the military’s system acquisition and 

development process were central to how software contributed to accident risks. 

This article makes two main contributions. First, scholarship on military accidents has been 

preoccupied with the clash between the normal accidents and HRO frameworks. Since Scott Sagan’s 

formative application of these frameworks to nuclear command and control accidents, this literature 

has seen very few theoretical innovations.13 Departing from the NAT-HRO dichotomy, this article 

presents a novel approach to exploring the sources and limits of safety in military technology 

systems. In doing so, it connects political science scholarship to a shift in the systems engineering, 

human-computer interaction, and risk management fields, which increasingly emphasize the need 

for “moving beyond normal accidents and high reliability organizations.”14  

Second, this article has direct implications for the risks of emerging technologies such as 

artificial intelligence. In recent years, leading scholars and policymakers have likened the safety 

hazards of autonomous military systems to the Cold War’s nuclear close calls, many of which were 

linked to false alarms produced by technological systems.15 For example, Michael C. Horowitz, a 

University of Pennsylvania professor who serves as the director of the DOD’s Office of Emerging 

Capabilities Policy, reexamined the Cuban Missile Crisis with autonomous naval ships in the mix, 

giving significant attention to the accident risks of uncontrollable systems.16 These analyses 

appropriately highlight specific features of AI-enabled military applications, such as enhanced levels 

of autonomy, but they gloss over the simple fact that these applications will be implemented as 

 
13 Sagan 1993; Schlosser 2009.  
14 Leveson et al. 2009. 
15 In June 2023, comments made by a U.S. Air Force colonel — in which he detailed an exercise in which an AI-
controlled drone attacked its operator — went viral. Later, the Air Force denied staging this simulation, and clarified that 
the colonel was describing a hypothetical scenario. Vanden Brook and Hjelmgaard 2023 
16 Horowitz 2019. 
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software programs.17 While AI will bring novel risks, learning from past software-intensive military 

systems should serve as a foundation for comprehending the risks of military AI applications. 

The article proceeds as follows. It first outlines my argument about how software 

development practices influence the risk of military accidents. Next, the article explains the empirical 

method by distilling the three theories’ competing expectations about the impact of software 

technology on military safety. Evaluations of the Vincennes, Patriot, and McCain cases trace the 

sources of these accidents back to the initial software requirements phase and weak ties between 

software developers and military operators. The Kessel Run case further supports SDL theory by 

demonstrating that an iterative approach to software development can reduce safety risks. The 

article concludes with a summary of key findings, as well as their implications and limitations. 

II. Theory: Software Development Lifecycle 

How does software affect military accidents? Typically, a software failure is characterized as 

the inability of code to meet performance requirements.18 When post-accident investigations assign 

blame to the crew by noting that software systems performed flawlessly, as was the case with the 

Navy’s report on the McCain crash, they rely on this narrow definition of software failure. In 

contrast, NAT and HRO theory emphasize that software can contribute to accidents, even when it 

performs according to its requirements, by influencing proximate structures and organizations 

tasked with managing hazardous technologies. These prevailing organizational theories of safety in 

technological systems, therefore, present a broader conception of software failure in military 

accidents.  

 
17 One exception is Schneider and Macdonald 2023, which discusses the impact of different acquisition strategies on 
managing the risks of autonomous systems, including operational trade-offs between control/safety and cost. 
18 Foreman et al. 2015, 102. 
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The first approach contends that normal accidents occur in software-intensive military 

systems due to tightly coupled and highly complex structural elements. When problems — even 

seemingly trivial ones — arise in systems where many events occur simultaneously and interact with 

each other, it is difficult for managing organizations to identify fixes.19 Even if the software works as 

coded, novel and unexpected interactions between battlefield conditions and such systems can 

snowball into unavoidable crises. For instance, in one 1979 false alert involving missile warning 

computers, the U.S. initiated retaliation measures based on mistaken reports of a major Soviet 

nuclear attack. This “near-miss” was produced by coincidences that would have been difficult to 

reasonably predict, including the insertion of training tape data at the same time as a momentary 

circuit failure in a ground station.20 

The second approach, HRO theory, also posits that accidents in software-intensive military 

systems are rooted in the organizational structures that manage these systems. Expressing a more 

optimistic view, HRO scholars claim that organizations can reliably prevent system accidents if they 

maintain certain qualities, such as deference to experienced operators, devotion to learning from 

failures, and commitment to safety.21 Studies of the U.S. nuclear navy, for instance, have highlighted 

the experience level of operators and cultural commitments to safety.22 Notably, the autonomy of 

experienced front-line operators to “circumvent” certain bureaucratic procedures is one way HROs 

maintain system safety.23 

While these two schools of thought are helpful for understanding how software affects 

military accidents, their focus is on how military organizations manage software systems after they 

 
19 Perrow 1984; Sagan 1993. 
20 Another coincidence that no one could have reasonably predicted was that the last block of sequential numbers on 
messages coming into the multiplexor of the system computer (the 427M) had been “001” and the first block of 
numbers in the mistakenly-inserted training data was “002.” Aerospace Defense Command, History of ADCOM/ADC, 
1 January-31 December 1979, n.d., Secret, excerpts, excised copy Jan 1, 1980. Newly declassified. 
21 LaPorte and Consolini 1991. 
22 Roberts et al. 2000; Winnefeld Jr., Kirchhoff, and Upton 2015; Scharre 2016.  
23 Leveson et al. 2009, 228. 
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are in operation. Less attention is paid to phases before militaries field these technologies: system 

acquisition and development. Yet, software safety specialists have identified the initial phase of 

software design and requirements specification as when the bulk of safety-critical decisions are 

made. Based on one study of military aviation mishaps, the concept development step accounts for 

70 to 90 percent of safety-relevant decisions.24 

Without accounting for military software acquisition and development, any explanation of 

accidents in software-intensive military systems is incomplete. In these early stages of system design, 

heavy reliance on contractors entails additional communication steps between people programming 

the software and those responsible for managing deployed systems. Drawing on Nancy Leveson’s 

seminal work on accidents that involve software, one review of decades of research on this subject 

concludes, “The source of most serious problems with software relates to outsourcing software 

development.”25 In the context of military accidents, the strength of these feedback channels 

between operators and software developers is especially significant because they bridge the military 

and civilian domains.  

This third approach, which I call software development lifecycle (SDL) theory, highlights the 

impact of software acquisition patterns on the development of accident-prone systems. Military 

software development typically follows a “waterfall model”, which begins with system requirements 

specification and then progresses sequentially through system design, development, testing, and 

deployment. In this process, evaluation and feedback from operators is limited to the late stages of 

development, by which time it is difficult to rework system concepts.26 As a 2010 National Research 

Council notes, the DOD’s acquisition practices for information technology were hampered by a 

 
24 Leveson 2012, 51. Frola and Miller 1984. 
25 Dobbe 2022. Spanning engineering, risk assessment, and the social sciences, scholars from a wide range of disciplines 
have studied how to safeguard software-based systems over the past few decades.  
26 Hawley 2017. 
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“serial approach to development and testing (the waterfall model),” in which “end-user participation 

often is too little and too late.”27 Water does not travel back up a waterfall. 

System safety can also be shaped by alternative models of software development, as well as 

other patterns of relationships among military procurers, field users, and external contractors. A 

more iterative software development process, for example, could limit the risk of accidents. For a 

start, incorporating more feedback from military operators in early stages of software system design 

could lead to human-centered interfaces, which aid military operators with rapidly interpreting data 

and making decisions in high-stress scenarios. Studies have found that confusing interface designs 

contributed to inadvertent military launches, fratricide, and other safety hazards.28  

Another safety advantage of software-intensive military systems is their adaptability, in the 

sense that they can be patched to address problematic human-machine interactions and hidden 

vulnerabilities. This advantage, however, remains a theoretical one if technical specialists are not 

attentive to how operators are using the system, as demonstrated by the Dhahran example in the 

introduction.29 Indeed, in recent years, the DOD has pushed for software engineering practices that 

involve rapid prototyping and early engagement with end operators.30 

While SDL theory highlights the importance of software engineering practices, more 

communication between end-users and developers does not solve all safety risks with software-

intensive military systems. Even if operators are sufficiently engaged in the software development 

 
27 National Research Council 2010. Related to the waterfall model, the DOD has historically relied on block 
development, in which each development phase is completed once according to unchanging software requirements 
established at the outset (cf. literature on evolutionary acquisition). Ford and Dillard 2009. I thank Jackie Schneider for 
her insights on this topic. 
28 Cummings 2006. For example, the lack of visual contrasts between button interfaces for different settings was 
implicated in a crash of an unmanned aerial vehicle during a routine flight in Nevada in 2000. Intending to press a key to 
pull up a submenu from the normal command menu, the pilot accidentally pressed a button in another menu button 
interface that severed the drone’s data link connection with the ground control station. The two interfaces were visually 
identical apart from a different border color. Another term for this is a “mode error,” which is when human operators 
lack awareness of the current mode of a particular system. Sheridan 2002.  
29 Schmitt 1991; Marshall 1992. 
30 Defense Innovation Board 2019. 
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process, they will not be able to anticipate all the contingencies under which the system will be 

used.31 In the context of missile defense, Rebecca Slayton’s work has demonstrated that differences 

between field tests and battlefield environments can demand significant shifts in software 

requirements.32 Thus, if software updates stop with the testing stage, then iterative models of 

software development cannot handle such challenges. 

The ramifications of SDL theory are present in other contexts where government agencies 

rely on external contractors to develop technological systems.33 For example, the National 

Aeronautics and Space Administration (NASA) has struggled to ensure that contractors adequately 

attend to flight anomalies and safety issues. Like the DOD’s acquisition process, NASA’s 

contracting process has sometimes limited the ability of end-users, the Astronaut Office in NASA’s 

case, to provide input on design problems.34 As a result, contractors aggressively pursued short-term 

solutions that avoided significant delays in delivery, resulting in unaddressed safety issues. 

While this study does not investigate the deeper causes of the software development models 

employed by militaries, the organizational politics of software acquisition provides a useful starting 

point. To maintain their key programs, defense-specialized contractors, especially large prime 

contractors, leverage their political relationships with government officials as well as their fluency in 

the military’s operational needs and idiosyncratic standards.35 There is limited incentive for these 

defense-oriented firms to move away from the waterfall model, as evidenced by their resistance to 

past acquisition reforms.36 In the U.S. case, personnel practices also reinforce certain software 

development patterns. Senior acquisition officials, often political appointees with limited operational 

 
31 Borning 1987. 
32 Slayton 2014. 
33 These theoretical claims also apply to other militaries. On different models of defense software development in 
France, the UK, Germany, and China, see Soare et al. 2023. 
34 Vaughan 1990, 241. 
35 Dombrowski and Gholz, 2006; Alic, 2014. 
36 Gholz and Sapolsky 1999, p. 34-35. 



11 

experience, are not particularly motivated to usher in more iterative software development 

approaches.37 

SDL theory builds on the NAT and HRO approaches, which have broadened our 

perspective on software’s role in military accidents, but also differs from them in crucial ways. 

Debates between the normal accidents and HRO camps tend to concentrate on whether accidents 

are inevitable or not in complex technological systems.38 Likewise, this clash has been adjudicated in 

military domains by focusing on how military organizations operated and managed such systems 

after they had been fielded. SDL theory extends the causal timeline for military accidents back to the 

initial phases of software design and requirements specifications. In doing so, it also broadens the 

range of actors responsible for military accidents to include the defense contractors that actually 

build the software (Figure 1).  

 

 

 

 

 
37 Fox 2012. Relatedly, boards of inquiry for military accidents are typically staffed by military operators, as opposed to 
professional investigators. These boards tend to avoid investigating the actions of contractors in designing systems, 
because they want to avoid implicating the more senior officials in charge of procurement decisions. Interview with 
C.W. Johnson, author of handbook on military accidents, March 13, 2023. 
38 In Sagan’s words (1993, 14), these discussions center around “conflicting visions about what could be called the 
degree of perfectibility that is possible in complex organizations.” 
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III. Empirics 

Adopting a congruence analysis approach, I assess the relative strength of SDL theory 

against NAT and HRO theory across four historical case studies: the Vincennes accident (1969-1988); 

the Patriot fratricides (1985-2003); the USS McCain collision (2008-2017); and Kessel Run software’s 

performance in the Afghanistan evacuation (2017-2021). In each of the cases, I evaluate the 

observable implications of SDL theory, and then compare them to those derived from the two more 

established theories (Table 1).39 Though all three theoretical approaches agree that there is a causal 

relationship between the introduction of software and an accident, they offer substantially divergent 

interpretations of how this process occurs, in particular as it relates to principal actors, timing of most 

relevant decisions, precipitating events, and conceptions of software failure. The last case, in which 

the U.S. Air Force experimented with a different approach to software acquisition and development, 

further probes SDL theory by providing variation on the type of software acquisition pathway. 

 

Table 1: Competing Perspectives on Software’s Contribution to Military Accidents 

 SDL HRO NAT 

Principal actors Software developers 
(contractors) and senior 
procurement officials 

Military organizations 
responsible for operating 
software systems 

Military organizations 
responsible for operating 
software systems 

Timing of most 
relevant decisions 

Initial contracting phase, 
software requirements 
specification, preceding 
decade(s) 
 

After the system has been 
fielded (emphasis on 
continuous operations and 
training) 

Combination of system 
design and organizational 
operations after system has 
been fielded 

Conception of 
software failure 

Software development 
process does not 
incorporate feedback from 
end-users 

Operators not adequately 
trained to manage software 

Software contributes to 
tight coupling and high 
complexity 

Precipitating events Predictable issues that 
remain unaddressed due to 
software dev. lifecycle 

Mistakes that escalate 
because operators unable 
to maintain system safety 

Novel and unexpected 
interactions between system 
components 

 
39 Blatter and Blume 2008. 
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To ensure a harder test of SDL theory, I selected cases that are held up as representative 

illustrations of the NAT and HRO models. Analyses of the McCain, Vincennes, and Patriot 

accidents often pinpoint either complex software or inadequate operator training as key causal 

factors.40 Paul Scharre, for example, writes, “The causes behind the Patriot fratricides illustrate how 

normal accidents also can occur in military systems.”41 This test’s generalizability is enhanced 

because these cases also differ in many ways, including their operational context, level of complexity, 

organizational culture, type of safety hazard, as well as the relevant military organizations.42 Ideally, 

the cases would not be confined to the U.S. context, but this decision was shaped by practical 

considerations, including access to interviewees and archival records on a subject which the U.S. is 

relatively more open about than other countries. 

  The focus on software applications in navigation, operational planning, and weapons control 

systems — which aid platforms in tracking, targeting, and shooting their targets — provides two 

further advantages. First, these are reference classes that are similar in many relevant aspects to how 

AI could be incorporated into powerful military systems.43 Second, compared to those linked to 

nuclear weapons systems, command and control issues in these military software applications are 

relatively understudied, and they provide a new universe of cases to explore the effects of 

technology on military accidents.44 Thus, they provide fertile ground for theory development, so as 

to evaluate whether the potential validity of my argument is sufficient to warrant further empirical 

testing.  

 
40 Bode 2023; Scharre 2016; Miller et al. 2019. 
41 Scharre 2016. 
42 The three main branches of the U.S. military are represented: i) the Afghanistan evacuation (Air Force), ii) the 
Vincennes and the McCain (Navy), and iii) the Patriot fratricides (Army). 
43 Perrow, the pioneer of NAT, also cites software as a neglected area. Perrow 1999, 354. 
44 Rochlin 1991. 
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Lastly, these cases all feature systems in military settings where safety must be balanced 

against operational effectiveness. Lessons learned from software-related accidents in civilian 

domains where safety considerations supersede all else, such as airline transport or air traffic control, 

may not translate. Similarly, in many of the military operations studied by HRO researchers, such as 

peacetime aircraft operations, safety goals were protected from other competing priorities.45 Insights 

from these cases, therefore, provide more leverage for understanding the risks of human-software 

interaction in the settings where the reduction of accident risk is especially challenging and 

geopolitically sensitive. 

All of these accidents are the product of multiple, overlapping factors. The task of analyzing 

the congruence between observations and the predictions of three different theories is made more 

difficult because many of the official post-accident investigations do not discuss the system 

development process and the role of defense contractors. To fill in the gaps, I benefit from 

declassified documents, archived discussions in the Forum on Risks to the Public in Computers and 

Related Systems, and interviews with people who developed and tested these systems. 

Vincennes (1969-1988) 

On July 3, 1988, the USS Vincennes deployed to investigate reports of Iranian Revolutionary 

Guard Corps speedboats attacking neutral merchant ships.46 Known as a “robo-cruiser,” the 

Vincennes boasted an Aegis system, a highly sophisticated combat information center (CIC) that 

automated functions such as target classification and target-weapon pairing.47 That morning, radar 

operators on the Vincennes misidentified an Iranian commercial plane for a military one, and the 

 
45 Leveson et al. 2009, 239. 
46 Much of this section draws on archived discussions in the Forum on Risks to the Public in Computers and Related 
Systems, a community of computer safety researchers who analyzed incidents such as the Vincennes. I also relied on 
materials about the Vincennes investigations held in the Black Vault, an online repository of declassified documents. 
47 Cox 2018. 
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U.S. naval ship fired surface-to-air missiles at Iran Air flight 655, killing all 290 civilians on board. 

Over three decades later, the tragic event still generates mistrust of the U.S. among the Iranian 

leadership and public.48  

How does a billion-dollar warship, equipped with state-of-the-art software for tracking and 

classifying aircraft, end up shooting down a commercial plane? The official investigation revealed 

that the ship’s Aegis system supplied accurate data to the Vincennes crew. Concretely, the system 

provided altitude information that the plane was ascending (like a commercial plane), not descending 

(like a hostile military plane). The crew, however, reported that the aircraft was descending as it 

approached the ship.49 There is much to be mined from the high-stakes calls made in these critical 

minutes, and the ensuing investigations and Congressional hearings identified stress and 

psychological factors as primary causes.50 Yet, it is equally, if not more, valuable to trace problems 

with the Aegis further back to the decisions made about software design in the initial procurement 

phase. This would also cast attention on the companies that built the system — most prominently 

RCA Corp., which was awarded the prime contract for the Aegis in 1969.51  

If SDL theory holds, the case evidence should show that the system development process 

factored into the CIC operators’ struggles with managing Aegis-related risks. One of the key issues is 

whether the Aegis’s program managers and RCA gave sufficient attention to user interface 

considerations in tense, combat settings. Matt Jaffe, a systems engineer at RCA in the mid-1970s, 

pushed for the Aegis display to include a rate-of-change indicator for altitude. Having previously 

served in the Vietnam War on ships equipped with forerunners to the Aegis system, Jaffe was one of 

the few people involved in Aegis software development with experience operating similar systems in 

 
48 Danby 2021. 
49 Smith 1988. 
50 Dotterway 1992. 
51 Hilts 1988. 
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high-stress environments. On the issue of adding a rate-of-change indicator for altitude, Jaffe recalls, 

“I wound up literally screaming at my boss, ‘You hired me for my technical experience and combat 

experience. If you’re not going to listen to me, why don’t you fire me?!’”52  

These human-machine interface issues contributed to the Vincennes accident. Without this 

rate-of-change indicator, controllers had to “compare data taken at different times and make the 

calculation in their heads, on scratch pads, or on a calculator – and all this during combat.”53 This 

increased the likelihood of misreading whether a ship was descending or ascending. These issues 

could be traced back to the extent, timing, and influence of feedback from military operators to 

software contractors in the system development process. As Jaffe states, “When Aegis was being 

developed, it was being developed with a waterfall (model)…we drew up a software requirements 

specification document, sent it to the Navy for review, and then they would come back for one 

meeting of a few hours. It's hard to do human-machine interface that way.”54 

Furthermore, many actors had raised concerns that Aegis systems proceeded into production 

without adequate attention to testing and operator feedback. A Government Accountability Office 

(GAO) investigation reported a “long list of testing limitations” to the Aegis system at RCA’s facility 

in Moorestown, New Jersey, such as the on-land location, lack of actual missile firing capability, and 

differences between the system being tested and the production version.55 In 1983, according to the 

GAO report, a Navy Admiral and former director of the DOD’s testing and evaluation office 

“termed the Moorestown facility not sufficiently realistic for tests prior to a production milestone.”56  

 
52 Interview with Matt Jaffe, March 8, 2023. Jaffe also emphasized that RCA managers provided some valid pushback to 
this indicator, including: the limited display space, risks of information overload, and issues related to the vertical beam 
width of the radar (which could muddle rate-of-change calculations). Ultimately, Jaffe’s supervisor claimed that the Navy 
never requested such an indicator. Thus, the root issue remains that RCA was not receiving input from military 
operators experienced with such systems. 
53 Lerner 1989. 
54 Interview with Matt Jaffe, March 8, 2023. 
55 I am very grateful to Shelby Oakley, at the Government Accountability Office, for helping me locate this report. U.S. 
Government Accountability Office 1988. 
56 U.S. Government Accountability Office 1988. 
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In 1983 and 1984, the Navy did conduct a few sea tests of Aegis combat systems equipped 

with a SPY 1-A, which was the radar used on the Vincennes; however, the realism of these tests has 

also been questioned. The test ranges were set up such that threats would only come from a 

predictable area. Moreover, certain events, such as aircraft leaving the immediate test area, tipped off 

crews that a test event would soon occur. Together, these conditions allowed “crews to deduce the 

general direction, timing, and type of the test threats.”57 Sources familiar with a classified version of 

the GAO report confirmed that these sea tests did not approximate a realistic, challenging combat 

environment.58 

While this GAO investigation was published three weeks after the Vincennes accident, it drew 

on interviews conducted between September 1987 and March 1988. The report also studied testing 

and evaluation processes for not just the Aegis but also five other systems.59 This means that, in 

contrast to many post-incident reviews, the GAO study had identified problems with the Aegis before 

the accident, limiting the risk of hindsight bias in shaping its conclusions. 

As noted above, the earliest investigations of the Vincennes accident converged on 

psychological biases that affected the crew during those fateful minutes when the decision was made 

to strike, in particular a condition labeled “scenario fulfillment”, under which groups fixate on a 

possible scenario (e.g., an Iranian air attack) and ignore evidence that goes against their 

expectations.60 Later examinations of this case have undermined this account, arguing that the crew’s 

misinterpretation of data was likely due to a combination of information overload and unwieldy user 

displays, rather than collective delusion.61 Moreover, some psychologists stressed that mistakes made 

 
57 U.S. Government Accountability Office 1988. 
58 Ahern 1988. Regarding these sea trials, a detailed Newsweek investigation stated that “the navy could not afford to risk 
failure in the trials for fear that Congress would stop funding the Aegis program.” Barry and Charles 1992. 
59 Chelimsky 1988. 
60 Another alternative factor is changes in the rules of engagement. See Sagan 1991. Sagan identifies “hair trigger” rules 
of engagement as a “permissive cause” in the Vincennes tragedy. 
61 For one of the strongest arguments against the “scenario fulfillment” explanation, see Dotterway 1992. Roberts and 
Dotterway 1995. 
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by operators were entrenched in the system design and development process. On this thread, 

Richard W. Pew, who testified to Congress on behalf of the American Psychological Association, 

stated, “Part of the problem is that automation decisions are made at the time the fundamental 

architecture of a system is being defined. We need more extensive methods of analysis to understand 

how to integrate human operator performance with system performance during the conceptual design 

state of new weapon systems.”62 

What can NAT and HRO tell us about the Vincennes case? At the time, the Aegis was one 

of the most complicated weapons systems in action.63 It could also operate at high levels of 

automation from target tracking to missile firing sequences. This type of tight coupling was needed 

to respond to the types of threats that Aegis would face – the time between the appearance of the 

Iranian plane on the radar screen and the decision to fire spanned four minutes.64 With a system like 

this, NAT tells us that a Vincennes-like disaster was inevitable.  

If the Vincennes accident was caused by novel and unexpected interactions related to the 

Aegis system, that would provide further support to the NAT account. Based on evidence gathered 

by Kristen Dotterway, it is possible that the Aegis automatically re-assigned the Iranian plane’s track 

number (TN 4474) to a different track number (TN 4131) entered by the USS Sides, which was part 

of the surface action group under the Vincennes. Then, when the Vincennes crew asked for an 

update on TN 4474, thinking it was still attached to the Iranian plane, the Aegis computer had 

already matched that number to a U.S. Navy jet that was descending to check in with a U.S. aircraft 

carrier in the Gulf of Oman. By some accounts, this was a “freak occurrence” that explains why 

multiple crew members reported that the aircraft was descending.65  

 
62 Pew 1988. Emphasis mine. 
63 Hilts 1988. 
64 Bode and Watts 2021, 44. 
65 Maclean 2017, 29. 
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On the other hand, aspects of this case suggest that the breakdowns in information-

gathering within the Vincennes were much more predictable. Assuming the TN 4474 re-assignment 

account holds up, the software development process should have addressed the risks associated with 

automatically changing track numbers.66 At the very least, the Aegis should have had an alert 

mechanism that notified the operator when track numbers had been automatically re-assigned.67 

Dotterway, who originally reconstructed the sequence of events in this account, also blames the 

“poor interface between the Aegis weapon system and the operator, especially the procedural 

complexity and a problematic presentation of information illustrated in the auto-correlation and 

subsequent confusion of track numbers.”68 Furthermore, another explanation for the “descending” 

call was that the crew had misinterpreted decreasing range values as altitude values, which would 

connect back to the system development issues related to rate-of-change indicator for altitude 69  

By highlighting the operators of the Vincennes, the HRO approach also offers some insights 

into this case. According to HRO theory, preventing Aegis-linked accidents comes down to whether 

organizations can cultivate environments in which groups can reliably perform in high-pressure 

situations, such as deference to experienced frontline operators who can independently circumvent 

rules to prevent accidents when issues arise.70 In the Vincennes case, the CIC operators had limited 

experience managing Aegis systems in high-stress environments. Per a Newsweek investigation, the 

tactical officer for surface warfare “was uncomfortable with computers” and, according to one 

fellow officer, “used his screen as a surface for ‘self-stick’ notes.”71 

 
66 In fact, these types of risks were well-established, not freak occurrences. Interview with Dr. Nancy Roberts, June 12, 
2023. 
67 Dotterway 1992, 59. 
68 Dotterway 1992, 173. 
69 Dotterway 1992, 54. 
70 Scharre 2018. 
71 Barry and Charles 1992. 
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Yet, it is important to not overstate the implications of HRO in this case. Even the most 

well-trained and experienced crew would have struggled to process Aegis data in combat 

conditions.72 As the evidence above demonstrates, the Vincennes’s problems were less about the level 

of training or the ability of operators to learn from mistakes and more entrenched in the flaws of the 

software development model. By the time operators could train with and test the system, any issues 

they identified would not have been able to be fixed. Thus, the HRO approach disregards the role of 

the contractors that develop Aegis software and the robustness of feedback loops between military 

operators and system designers.  

The Department of Defense’s official investigation report on the Vincennes incident numbers 

153 pages.73 There are over 70 references to Captain Will Rogers III, who commanded the Vincennes; 

nearly 20 mentions of the experience level of operators; and 9 references to the compression of time 

or complexity of the technological system. RCA, the system developer, is not mentioned even once. 

Fully understanding the causes of the Vincennes tragedy requires looking beyond just the organization 

operating the ship to Moorestown, New Jersey, where the Missile and Surface Radar Division of 

RCA was located.  

Patriot “Friendly-Fire” Incidents (1985-2003) 

In 2003, during the Second Gulf War, the U.S. Army’s Patriot air defense system was 

involved in three “friendly fire” incidents. In one episode, which occurred on March 23, a Patriot 

missile downed a British Tornado fighter-bomber, killing the two British soldiers on board. A week 

and a half later, a Patriot battery shot down a U.S. Navy fighter jet, killing the pilot in another 

fratricide. In a third incident, a Patriot radar locked on to a U.S. Air Force F-16; in response, the 

pilot destroyed the Patriot battery with a missile. Fortunately, this confrontation resulted in no 

 
72 Barry and Charles 1992. 
73 Fogarty 1988. 
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casualties. In total, friendly fire incidents comprised 25 percent of the Patriot’s twelve total 

engagements in the conflict.74 

Problems with how the Patriot system interpreted identification friend or foe (IFF) signals 

were central to these friendly fire incidents. In 2005, a Defense Science Board task force reviewed 

the Patriot’s performance in Operation Iraqi Freedom (OIF) and concluded that Raytheon’s IFF 

system performed very poorly – a problem that had been made apparent in training exercises.75 This 

begs the question of why this issue was not addressed. The task force stated that it “remains puzzled 

as to why this deficiency never garner[ed] enough resolve and support to result in a robust fix.”76 

Detailed investigations suggest that the answer to this puzzle lies in the system development 

process, which extends back to at least 1985, the year that Raytheon was awarded a Patriot software 

modernization contract.77 According to Dr. John K. Hawley, an engineering psychologist with the 

U.S. Army Research Laboratory with over 35 years of expertise on human-machine interactions in 

Patriot units, the DOD’s systems acquisition process functioned as the most daunting obstacle to 

safer Patriot performance in OIF. Raytheon, the Patriot’s prime contractor, followed the waterfall 

model, in which feedback and evaluation was left until system development was nearly complete.78 

Hawley comments, “[The system developers] still have this idea that they have this acquisition 

process, and when it’s finished, it’s finished. Oftentimes, the user is not equipped to use it that 

way.”79 The Government Accountability Office diagnosed similar issues in earlier cycles of Patriot 

development, in which “the Army believed it necessary to proceed (with production) even though 

test results identified major problems.”80 

 
74 Scharre 2018. 
75 Defense Science Board Task Force 2005. 
76 Defense Science Board Task Force 2005. 
77 This contract initiated the first phase of software modifications (PAC-1). The PAC-2 software changes, which were 
the most relevant to OIF, began in 1986. 
78 Hawley 2017. 
79 Interview with John K. Hawley, May 9, 2022. 
80 Conahan 1983, 9. 



22 

This approach was especially ill-suited to Patriot upgrades in identification algorithms and 

automatic operating modes, which were brittle and demanded military users to intervene in extreme 

situations.81 As they made upgrades to the Patriot’s software, contractors and concept designers built 

technical components to meet certain efficiency and performance requirements, leaving operators to 

deal with the residual impacts (e.g., the Patriot’s issues with track classification and identification). 

Whether operators could fulfill the associated demands was not tested until the tail of the system 

development process, when it was too late to change the system’s fundamental design. Hawley and 

Anna L. Mares, another researcher at the U.S. Army Research Laboratory, conclude, “The roots of 

[the Patriot’s] apparent human performance shortcomings can be traced back to systemic problems 

resulting from decisions made years earlier by concept developers, software engineers, procedures 

developers, testers, trainers, and unit commanders.”82 

Indeed, even efforts oriented toward identifying deficiencies in Patriot operators eventually 

turned to the system acquisition process. Following the 2003 fratricides, the Army Research 

Laboratory initiated “The Patriot Vigilance Project,” which, as its name suggests, initially aimed to 

investigate the discipline and alertness of Patriot operators. Ultimately, after expanding its scope to 

cover twenty years of the Patriot’s evolution, the review warned against laying too much blame on 

operators, instead emphasizing deeper system development problems like “faulty going-in concepts” 

that proved “difficult and expensive to correct” later in the process.83 

How well do the NAT and HRO approaches account for the Patriot accidents? Certainly, 

the two system features of normal accidents were present in the Patriot case. To begin, it was 

difficult for operators to grasp the intricate connections between the Patriot system’s moving parts. 

In the aftermath of the friendly-fire incidents, experts scrutinized the Patriot’s “enormous 

 
81 Hawley 2017. 
82 Hawley and Mares 2018. 
83 Hawley 2007. 
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complexity,” which had been enhanced by software upgrades to enable automated engagement.84 

Second, the Patriot system was also tightly coupled. There was very little slack between the initial 

detection of an incoming missile and the decision to respond.85 As the British Ministry of Defence’s 

inquiry into the Patriot-Tornado fratricide put it, “The crew had about one minute to decide 

whether to engage.”86 

While some aspects of this case bear out the expectations of NAT, it misses other key 

contributing factors to the Patriot accidents. The observable implications of NAT are most 

compatible with the second fratricide involving the F/A-18C Hornet fighter jet, in which the Patriot 

system could not adapt to novel and unexpected interactions.87 In this instance, when Patriot radars 

operated in close proximity and followed the same aircraft, they would produce false ballistic missile 

trajectories, or “ghost tracks.”88 In line with NAT, this situation was relatively unpredictable, and it 

would have been difficult to uncover in the development process. 

However, other elements of the Patriot accidents were much more preventable. The “ghost 

tracks” issue was not relevant to the March 23 fratricide or the U.S. F-16 engagement on the Patriot. 

Most of the IFF problems were well-known to both Patriot operators and aircraft pilots, who were 

afraid to fly in zones tracked by Patriot units due to the frequency with which the radar systems 

would lock on to their aircraft.89 As Paul Scharre writes, “Other problems, such as the potential for 

the Patriot to misclassify an aircraft as an anti-radiation missile, had been identified during 

operational testing but had not been corrected and were not included in operator training.”90 

 
84 Piller 2003. 
85 If the Patriot was operating in auto-fire mode, even less slack was present. 
86 Ministry of Defence (United Kingdom) 2003, 3; cited in Bode and Watts 2021. 
87 Scharre 2018, 144. 
88 Postol 2004. Lambeth 2013, 245. 
89 After the F-16 aircraft shot down the Patriot unit, one pilot remarked. “We had no idea where the Patriots were, and 
those guys were locking us up on a regular basis. No one was hurt when the Patriot was hit, thank God, but from our 
perspective they’re now down one radar. That’s one radar they can’t target us with any more.” Lambeth 2013, 115. 
90 Scharre 2018, 144. Unlike the ballistic missile misclassification, there was plenty of evidence to suggest that aircraft 
might be misidentified as anti-radiation missiles. 
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Developments in this case also illustrate the HRO approach’s utility and drawbacks. The 

Patriot crew were relatively inexperienced and overly reliant on automated outputs.91 In its 

investigation of the Patriot fratricides, the Defense Science Board task force suggested that 

operators gain more autonomy over firing decisions. “The solution here will be more operator 

involvement and control in the functioning of a Patriot battery,” the task force report states.92 

Failing to satisfy critical features of an HRO, Patriot units did have experienced operators who could 

bypass established practices to maintain safety in crisis.93  

Still, regarding the Patriot accidents, HRO theory’s explanatory power is limited in two ways. 

First, it is unlikely that even front-line operators with more experience and autonomy would have 

been able to substantially reduce accident risks. The Patriot’s IFF problems meant operators would 

have very little time and information to circumvent the system’s targeting decisions.94  

Second, the HRO approach neglects the need for operator feedback earlier on in the system 

development process. For instance, a more iterative development process could have alerted 

designers and contractors to the need for targeting algorithms that could be updated according to 

data specific to the missiles in a particular theater.95 In contrast, the U.S. Army and Raytheon had 

“committed to a system concept that demonstrate[d] patterns of performance unreliability,” leaving 

it to the operators to deal with the additional risks.96 In this sense, the focus on Patriot safety culture 

and operator training points toward an “end-of-pipe” solution, whereas the SDL approach controls 

risk from the source.  

 
91 Automation bias refers to the phenomenon when operators have “too much” trust in autonomous systems. Bode and 
Watts 2021. Horowitz 2019. 
92 Defense Science Board Task Force 2005. 
93 An organization’s learning orientation is another key characteristic of HROs. In this case, there is evidence that the 
Army did not learn from Patriot deficiencies in the First Gulf War. Postol 1991. 
94 Ministry of Defence (United Kingdom) 2003. 
95 Bode and Watts 2021, 55. 
96 Hawley 2007. 
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The above evidence suggests that the Patriot’s safety issues are deeply embedded in the 

military’s acquisition approach for software-intensive systems. In response to the Patriot fratricides, 

the military implemented technical fixes and adjusted human-machine interfaces to help operators 

adapt to new systems. Yet, these reforms do not address the underlying problems with how the 

military, in partnership with Raytheon and other private contractors, acquires and develops systems 

like the Patriot, in particular its reliance on the waterfall model of software development.  

USS McCain Collision (2008-2017) 

On August 21, 2017, the U.S. Navy destroyer John S McCain made a sudden turn to port and 

collided with a Liberian-registered oil tanker east of the Straits of Malacca. About an hour before, 

the destroyer’s captain had switched the Integrated Bridge and Navigation System (IBNS) to backup 

mode, setting off a series of mistakes that caused the hard turn. The crash resulted in the death of 

ten Navy sailors, making it the Navy’s deadliest accident in four decades.97 More broadly, this 

mishap renewed fears that maritime accidents, especially ones that take place in strategically 

important waterways like the Straits of Malacca, could escalate into major military confrontations.98 

As established in reviews by the National Transportation Safety Board (NTSB), the United 

States Fleet Forces Command, and the nonprofit newsroom ProPublica, design flaws in the IBNS 

played a major role in the accident. First, in its backup mode, the IBNS allowed crew from different 

parts of the ship to take charge of steering, which led to confusion over which station had thrust 

control for different propellers. Second, for steering commands, the IBNS only provided touch-

screen controls, as opposed to mechanical throttles that provide more tactile feedback to 

operators.99 As the NTSB’s investigation concludes, “The design of the John S McCain’s touch-

 
97 Miller 2019. 
98 See, for example, The Straits Times 2017. 
99 These design decisions did not adhere to international standards for human engineering in marine systems, which have 
been approved by the U.S. DOD. Mallam 2020, 57. 
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screen steering and thrust control system increased the likelihood of the operator errors that led to 

the collision.”100 

To be sure, issues with the IBNS development process could have been partially mitigated 

by improved decision-making on the day of the collision or better training in the months before. 

Ultimately, however, these design flaws were rooted in the proclivity of system designers to 

automate and digitalize navigation functions without sufficient attention to the needs of operators. 

According to IBNS operators interviewed in the Navy’s investigation, they regularly disabled the 

system’s touch screen to avoid accidental rudder changes and ignored fault notifications due to the 

difficulty of interpreting indicators on the display areas.101 Notably, the IBNS modernization efforts 

did not consult the Navy’s own experts on human factors engineering.102  

It was only after the McCain collision that the Navy recognized the need for stronger 

feedback loops between operators and software developers. Prompted by an internal review, the 

Navy surveyed surface ship crews on the IBNS system. One striking finding — “the number-one 

feedback from the fleet” according to Rear Adm. Bill Galinis — was that operators 

“overwhelmingly” preferred mechanical controls over touch-screen systems.103 This type of 

participatory input, in which the introduction of new technology integrates end-user perspectives, 

was missing from the initial development of the IBNS.104 In line with SDL theory, these problems 

extend back across almost a decade of software acquisition and development to 2008, when the 

Navy first announced a contract with Northrop Grumman to build the IBNS.105 

 
100 National Transportation Safety Board 2019, 33 
101 U.S. Fleet Forces Command 2017. 
102 U.S. Fleet Forces Command 2017. 
103 Eckstein 2019. 
104 Mallam et al. 2020. As Eric Lofgren, an expert on defense acquisition, states, “Such an advanced bridge/navigation 
system should probably first been tried on smaller ships with continuous user feedback, tested extensively, iterated, then 
progressively scaled up to larger and more complex ships.” Lofgren 2019. 
105 Miller et al. 2019.  
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Insights from NAT and HRO theory also bear on this case. Regarding the former, some of 

the IBNS’s issues certainly stemmed from adding unnecessary complexity, including the feature to 

transfer thrust control for each propeller.106 Moreover, the accident happened in one of the world’s 

busiest seaways, an environment ripe for unexpected interactions in which one misstep could easily 

cascade.107 Applied to this case, NAT posits that accidents like the McCain collision are inevitable as 

long as the Navy relies on navigation systems that are highly complex and tightly coupled. 

It is important, however, to not overemphasize NAT’s explanatory power with respect to 

the McCain collision. To begin, not all the design issues with the IBNS can be reduced to 

unexpected interactions and the limited amount of slack between various components. For instance, 

automated bridge systems equipped with improved indicators and alarms should encourage looser 

coupling by giving the crew more time to correct issues that arise. Yet, the McCain crew ignored 

these alert systems because the display area was densely packed and difficult to interpret — the 

product of not incorporating operator needs into the design process.108 Furthermore, many of the 

IBNS’s complications were neither novel nor unexpected, as presumed by NAT, but rather 

predictable. The replacement of mechanical throttle with touch-screen controls, for example, went 

against principles held by the Navy’s own human factors engineering team and DOD standards.109 

Some of the lessons from HROs also pertain to the McCain case. Forward-deployed forces 

in the Western Pacific faced high operational tempo and staffing shortages, which resulted in long 

shifts and inadequate rest.110 This undermined the crew’s ability to take safety measures, as evidenced 

by the fact that bridge watchstanders were “acutely fatigued at the time of the accident.”111 Another 

critical aspect of HROs is the high experience level of operators. In this case, post-accident 
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108 U.S. Fleet Forces Command 2017. 
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investigations highlighted that the crew had not received sufficient training on the new IBNS 

system.112 

Yet, absent changes in the software development process, it is unlikely that the McCain 

could have avoided a major accident even if it had adhered to HRO principles. Having trained with 

the IBNS system in sea trials, the McCain’s captain grew accustomed to operating the IBNS in 

backup mode, which removes built-in safeguards, in part because he could not understand some of 

the system’s automated functions.113 Hypothetically, if the entire crew had more time to train with 

the navigation system, they would have adopted similar ways to bypass unwieldy features of the 

IBNS. Contrary to the expectations of HRO theory, which regard the ability of operators to sidestep 

certain procedures as a benefit to system safety, in this case, such circumventions would have 

enhanced the risk of accidents. 

Following the accident, the Navy sanctioned crew members for failing to properly manage 

the IBNS in the critical minutes before the collision, while the organizations and officials responsible 

for the software development evaded blame. In August 2019, the Navy did announce that it would 

contract with Northrop Grumman to remove touchscreen controls across the fleet; however, there 

has been no evidence that this redesign process will incorporate input from surface warfare 

operators.114 As the SDL approach suggests, without this fundamental change in the connections 

between the organizations that procure and develop the software, accidents like the McCain collision 

will continue to occur. 

 
112 U.S. Fleet Forces Command 2017; NTSB 2019. 
113 Advice from two other captains helped him make this decision. Miller et al. 2019. 
114 Malachowski 2020. 
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Kessel Run Software and the Afghanistan Evacuation (2017-2021) 

In the last weeks of August 2021, the U.S. and its allies scrambled to evacuate as many 

people from Afghanistan as possible before the August 31 withdrawal deadline. The Kabul 

International Airport was not used to managing this level of traffic — in all, more than 120,000 

people were flown out — so mission leaders relied on a software tool to plan out the exact time 

slots for arrivals and departures. Developed by Kessel Run, the U.S. Air Force’s own software 

factory, this planning software played a major role in the largest non-combatant evacuation in U.S. 

military history. Lt. Gen. Greg Guillot, who led the mission as the Air Forces Central commander, 

stated that Kessel Run’s software “served as a reliable, adaptable tool as we planned and executed 

this complex, historic operation.”115  

What accounts for the safe and reliable performance of Kessel Run’s software in the 

Afghanistan evacuation? This outcome diverges from expectations linked to the HRO and NAT 

framework. The operation, a 17-day sprint that required a substantial surge of Air Force aircraft and 

crew, could not benefit from the continuous learning existent in HROs.116 In addition, the 

evacuation’s complexity had increased the mission count past the point which the software was 

designed to accommodate. The compressed timeline meant that on-the-fly patches were required to 

deal with software outages.117  

In line with the expectations of SDL theory, Kessel Run’s software development model was 

critical to the airlift planning system’s ability to limit the risk of accidents. Accounting for this 

outcome necessitates an understanding of Kessel Run’s iterative software engineering process, under 

which tools like the ones used in the evacuation were developed around cycles of experimentation 

 
115 Blumenstein 2021. 
116 At one point, half of the Air Force’s C-17 transport planes were dedicated to the mission. Horton and Lamothe 2021. 
117 Beachkofski 2022. 
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with significant user feedback and testing.118 This approach starkly differs from the software 

modernization effort that Kessel Run replaced, the “AOC 10.2” program initially awarded to 

Lockheed Martin, which had limited engagement with operators in the field even a decade after 

software requirements were established.119 

The importance of this adaptable approach was validated by Kessel Run’s response to a 

software outage, as the system struggled to accommodate the exponential growth in mission counts 

demanded by the evacuation effort. In the span of 12 hours, the Kessel Run team implemented a 

fix, which included adding a new feature that was approved by users in the 609th Air Operations 

Center.120 According to one Kessel Run engineer, this adaptation was successful because the team 

could “dry-run the changes they were making in a sort of digital staging area, while liaison officers 

— with literally the boots-on-the-ground, in some cases — could communicate with end users to 

fully realize their immediate needs.”121 As Brian Beachkofski, who led Kessel Run during the 

evacuation, notes, if this system was developed with a “big bang” release, in which end-users do not 

engage with the software until after the big product delivery event, this adaptive response would 

have been impossible.122 

While the first three case studies serve as the main test ground for competing theories of 

software’s role in military accidents, evidence from this case demonstrates how iterative software 

development practices can reduce the risk of mishaps. Some qualifying factors should be taken into 

account. In this scenario, the magnitude of a software mishap was not on the same level as accidents 

in the other three cases.123 For systems where the stakes are magnified, such as nuclear command 
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122 Interview with Brian Beachkofski, April 10, 2023. This “big bang” release approach is a common byproduct of the 
waterfall model. 
123 For instance, a software failure could have caused missions to be released without aerial refueling support, which 
could result in a transport plane having to land in a place unable to accept refugees. 
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and control, a continuous delivery approach that eschews software requirements specification may 

not be the most appropriate approach.124 In addition, Kessel Run’s safety benefits were limited to 

one specific mission, not proven across years of operations. Fortunately, this type of continuous 

analysis may be more feasible in the future, given that Kessel Run now assists the F-22 and F-35 

program offices, which govern some of the military’s largest procurement programs.125 

IV. Conclusion 

International relations as a discipline has largely spurned the study of accidents, possibly 

because they tend to be seen as random events that cannot be explained by general causes.126 In this 

line of thinking, civilian casualties are tragic but inevitable costs of warfare; friendly fire incidents are 

unfortunate, but it would be pointless to try and identify their common determinants. In contrast, 

this article maintains that a science of accidents is possible. 

By centering the system acquisition and development process, I have provided an 

explanation and evidence for how software technologies contribute to military accidents. When 

military software development follows a “waterfall” approach, in which input from operators is 

limited to end stages of testing and deployment, many safety hazards will only be revealed after it is 

too late to rework system designs. Under this model of software development, the risk of accidents 

is elevated. Conversely, when the software development process allows for early feedback from 

military operators during system design and requirements specification, confusing interface designs 

and other human-machine interaction problems can be mitigated. 

 
124 Leveson 2019. 
125 The Air Force has mandated one command-and-control monitoring tool used in the Afghanistan evacuation to be 
used across all Air Combat Command installations. Budden et al. 2021. Pomerleau 2021. 
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This article makes two main interventions in the literature on complex technological systems 

and military accidents. First, studies of military accidents have primarily tapped into two wells of 

organizational scholarship, the HRO and NAT approaches, on managing hazardous technologies. 

By focusing on breakdowns in complex technologies and military organizations in the critical 

seconds and minutes of a crisis, applications of these two theories neglect the process that occurs 

before militaries field technological systems: acquisition and development. In extending the causal 

timeline of military accidents beyond decisions made on the battlefield to those made decades earlier 

in software design and development, SDL theory presents an alternative way to explain how 

software contributes to military accidents. 

My aim is not to devalue the contributions of NAT and HRO theory to the study of safety 

in military systems. These two approaches have introduced important concepts like coupling and 

complexity, and they have underlined the impact of safety culture and organizational structure on 

accidents.127 They have also broadened the notion of software failure, beyond the inability of code to 

meet performance specifications, to encompass problems linked to interactions between software 

systems and surrounding structures and organizations. Instead, by illustrating some limitations of 

these two prominent theories as it pertains to military accidents, this article seeks to open new 

directions for assessing safety in military systems, which highlight the organizational politics of 

system acquisition. 

SDL theory also runs up against limitations, which can serve as jumping-off points for future 

research. The impact of software acquisition and development pathways on military accidents is 

constrained by other factors, such as the capacity of military end-users to imagine realistic risks 

associated with software systems and the extent to which field tests simulate battlefield 

environments. Furthermore, due to space constraints, this article does not further explore why 
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militaries adopt software development models like the waterfall approach. On this topic, fruitful 

inquiries can draw from the literature on the political economy of military expenditures.128  

Second, this article provides a distinct perspective on the burgeoning discussions of AI-

enabled military systems and their safety risks. Revisiting near nuclear confrontations in the Cold 

War, a Bulletin of the Atomic Scientists essay warned, “Today, artificial intelligence, and other new 

technologies, if thoughtlessly deployed could increase the risks of accidents and miscalculation even 

further.”129 In these discussions, scholars and policymakers underline “novel” risks, such as those 

linked to increased speed of decision-making. To be sure, there are many ways that AI systems today 

differ from the software of old.130 And, certainly, investigating those unique features will uncover 

useful insights into understanding how AI will affect military accidents. 

At the same time, there is a lot to learn from historical cases. This article uncovers lessons 

from the development of automation software in older military systems that translate to recent AI 

advances. In addition to following the latest technical advances in the AI field, debates over the risks 

of military AI applications must also integrate knowledge from studying past software-intensive 

military systems. After all, new technologies will not escape old problems. 

 

 

 

 

  

 
128 Alic 2014; Dombrowski and Gholz 2006. 
129 Ruhl 2022. 
130 For an overview of unique safety issues with AI systems built using machine learning and reinforcement learning 
techniques, see Amodei et al. 2016. 
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